Enter your keyword

2-s2.0-85039921284

[vc_empty_space][vc_empty_space]

Improvement of fluid simulation runtime of smoothed particle hydrodynamics by using graphics processing unit (GPU)

Srigutomo W.a, Kurnia R.a, Suprijadia

a Physics of Earth and Complex System, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2017 Published by ITB Journal Publisher.This study concerns an implementation of smoothed particle hydrodynamics (SPH) fluid simulation on a graphics processing unit (GPU) using the Compute Unified Device Architecture’s (CUDA) parallel programming. A bookkeeping method for the neighbor search algorithm was incorporated to accelerate calculations. Based on sequence code profiling of the SPH method, particle interaction computation – which comprises the calculation of the continuity equation and the momentum conservation equation – consumes 95.2% of the calculation time. In this paper, an improvement of the calculation is proposed by calculating the particle interaction part on the GPU and by using a bookkeeping algorithm to restrict the calculation only to contributed particles. Three aspects are addressed in this paper: firstly, speed-up of the CUDA parallel programming computation as a function of the number of particles used in the simulation; secondly, the influence of double precision and single precision schemes on the computational acceleration; and thirdly, calculation accuracy with respect to the number of particles. Scott Russell’s wave generator was implemented for a 2D case and a 3D dam-break. The results show that the proposed method was succesfull in accelerating the SPH simulation on the GPU.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Compute Unified Device Architecture (CUDA),Fluid simulation runtime,Graphic processing unit (GPU),Scott Russell’s wave generator,Smoothed particle hydrodynamics (SPH)[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.5614/itbj.ict.res.appl.2017.11.3.2[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]