[vc_empty_space][vc_empty_space]
The effect of TiO2 coating on pile penetration depth in clay
Amalia N.a, Asri A.a, Rokhmat M.a, Sutisnaa, Viridi S.a, Abdullah M.a,b
a Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, 40132, Indonesia
b MIBE S&T Institute, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2017 Published by ITB Journal Publisher.Pile driving tests were conducted using models of concrete piles with titanium dioxide (TiO2) coating and piles without coating. Pile surfaces coated with TiO2 become superhydrophilic, which enables water molecules in clay pores to be attracted to the pile during the pile driving process. The attraction suppresses the compression of the pore water in the clay soil, hence the result of the pile driving tests showed that piles with TiO2 coating could penetrate deeper than piles without coating with the same count of hammer strokes. An examination using FTIR confirmed the formation of bonds between water molecules for piles with coating and the absence of such bonding for piles without coating. Furthermore, it was successfully established that pile surface coating gives different results for pile driving in different clay soils.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Clay soil,Driving test,Pore waters,Super-hydrophilic,Surface coatings,TiO2 coating,Titanium dioxides (TiO2),Water molecule[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Coating,Concrete piles,Pile driving,Pore water,Superhydrophilic,Titanium dioxide[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work was supported by PMDSU Research Grant No. 314d/I1.C01/PL/2015 and BPPDN Research Grant No. 310y/I1.C01/PL/2015 from the Ministry of Research and Higher Education, Republic of Indonesia, 2015. Grateful thanks also go to the Soil Mechanics Laboratory at the Study Program of Civil Engineering, Bandung Institute of Technology.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.5614/j.eng.technol.sci.2017.49.5.6[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]