Enter your keyword

2-s2.0-85040922845

[vc_empty_space][vc_empty_space]

Structure of linear codes over the ring Bk

Irwansyaha, Suprijanto D.b

a Mathematics Department, Universitas Mataram, Mataram, Indonesia
b Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018, Korean Society for Computational and Applied Mathematics.We study the structure of linear codes over the ring Bk which is defined by Fpr[v1,v2,…,vk]/⟨vi2=vi,vivj=vjvi⟩i,j=1k. In order to study the codes, we begin with studying the structure of the ring Bk via a Gray map which also induces a relation between codes over Bk and codes over Fpr. We consider Euclidean and Hermitian self-dual codes, MacWilliams relations, as well as Singleton-type bounds for these codes. Further, we characterize cyclic and quasi-cyclic codes using their images under the Gray map, and give the generators for these type of codes.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Cyclic code,Euclidean,Hermitians,Linear codes,MacWilliams relation,Quasicyclic codes,Self-dual,Self-dual codes[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Cyclic code,Euclidean self-dual,Hermitian self-dual,MacWilliams relation,Quasi-cyclic code[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]Acknowledgements This research is supported in part by Riset ITB 2017. A part of this work was done while the second author visited Research Center for Pure and Applied Mathematics (RCPAM), Graduate School of Information Sciences, Tohoku University, Japan on July 2017 – August 2017 under the financial support from Penelitian Unggulan Perguruan Tinggi (PUPT) Kemenristekdikti 2017. The second author thanks Prof. Hajime Tanaka for kind hospitality.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1007/s12190-018-1165-0[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]