Enter your keyword

2-s2.0-85041379592

[vc_empty_space][vc_empty_space]

Design and implementation of attitude stabilization on Ganefly flapping wings micro aerial vehicle using Paparazzi

Nugroho M.A.A.a, Sepri A.Y.a, Benyamin R.S.B.a, Trilaksono B.R.a, Moelyadi A.a

a Laboratory of Control Systems and Computer, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2017 IEEE.Flapping Wings Micro Aerial Vehicle (FWMAV) is developed from MAV (Micro Aerial Vehicle) technology, which uses flapping wing mechanism to fly rather than rotors. MAV itself is a branch of UAV (Unmanned Aerial Vehicle) technology, and focuses on minimizing size and weight of the aircraft. Ganefly is an FWMAV with capability to fly autonomously based on GPS readings and waypoints input from the user. This autopilot system works in conjunction with other parts of the control systems in Ganefly, which also includes attitude stabilization system. Ganefly uses yaw control loop for horizontal attitude stabilization, because Ganefly does not use aileron to control roll, unlike usual aircrafts. The stabilization system is implemented using standard PID control and Paparazzi UAV firmware, on a Lisa/S autopilot board. Testing for stabilization system was done in Manual and Stabilization mode, and testing for autopilot mode was done in Autopilot mode. Results gathered from testing indicate that Ganefly in its flight is not horizontally stable in both Manual and Stabilization mode, and thus was not able to be tested on Autopilot mode.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Attitude stabilization,Attitude stabilization systems,Design and implementations,Flapping wing,Flapping-wing mechanism,Micro aerial vehicle,Stabilization systems,UAV (unmanned aerial vehicle)[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]attitude stabilization,Flapping Wings MAV,INS,Lateral Stabilization[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICSEngT.2017.8123445[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]