[vc_empty_space][vc_empty_space]
Utilization of excess steam through dry steam cycle at Kamojang geothermal power plant
Prananto L.A.a, Fauzi Soelaiman T.M.b, Aziz M.a
a Institute of Innovative Research, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
b Institut Teknologi Bandung, Bandung, Jawa Barat, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2017 The Authors. Published by Elsevier Ltd.We present the investigation of the electricity generation by utilizing the working fluid from the excess steam at Kamojang geothermal power plant which currently discharged to the atmosphere despite its thermal energy potential due to the vapor-domination of the steam. To produce accurate results, a model validated with real data of Kamojang plant will be employed in this study. Constraint of the model calculation is set based on the regime of allowable condenser pressure and cooling water temperature. Optimization of the system is carried out by investigating the most excellent gas removal system (GRS) of the non-condensable gasses (NCGs) based on real data operation. The GRS configurations will be developed from one-stage and two-stage of both liquid ring vacuum pump (LRVP) and steam ejector, and the hybrid system. We found that a one-stage LRVP is the best GRS among others, while it can produce an electric power of 15.94 MW from the 28.45 kg/s of working fluid. Considering the zero cost of the discharged excess steam, the installation of the plant will support the plant capacity and the surrounding area.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Condenser pressure,Cooling water temperature,Dry steam,Electricity generation,Kamojang,Model calculations,Non-condensable gas,Plant capacities[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]dry steam cycle,Kamojang,liquid ring vacuum pump,non-condensable gasses[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The authors would like to express their deep thanks to Indonesia Power Ltd. for the assistance in providing some data required in this study. This study is supported by the Indonesia Endowment Fund for Education (LPDP).[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.egypro.2017.12.026[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]