Enter your keyword

2-s2.0-85041695566

[vc_empty_space][vc_empty_space]

Catalytic oxidation of benzene using nano-CuO/γ-Al2O3 and commercial catalysts

Rahardi R.A.a, Maharsi R.a, Iskandar F.a, Devianto H.a, Budhi Y.W.a

a Chemical Engineering Study Program, Institut Teknologi Bandung, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.Volatile organic compounds (VOC) such as benzene are among the most dangerous air pollutants emitted by chemical industry stacks, as they may contribute to environment and health issues. Lean catalytic oxidation of benzene has been considered as most proper method to abate it from the flue gas. This work developed nano-based copper oxide catalysts for lean oxidation of benzene. The aim of this study was to evaluate the activity performance of the nano-based copper oxide catalyst and compare to commercial catalyst. On the basis of the commercial catalyst, this study was also aimed to determine the reaction rate and its kinetic parameter. The oxidation of benzene was conducted in a fixed bed reactor at 300°C, 1 atm, and GHSV of 15,000 h-1. The concentration of benzene in the feed and product were measured using online gas detector (Cosmos Gas Detector). The catalyst activity of nano-based copper oxide catalysts showed 20-30% conversion of benzene, while for commercial catalyst showed 86%. The reaction rate determination for first order reaction of benzene indicated that the activation energy was 48 kJ/mol with Arrhenius constant of 3×104 s-1.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Air pollutants,Arrhenius constants,Commercial catalyst,Copper oxide catalysts,First order reactions,Fixed bed reactor,Health issues,Volatile organic compound (VOC)[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The financial support provided by Ministry of Research, Technology and Higher Education, Republic of Indonesia, through National Competitive Research Grant “National Strategic Research” no. 009/SP2H/LT/DRPM/IV/2017, is gratefully acknowledged.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1755-1315/105/1/012039[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]