Enter your keyword

2-s2.0-85042128733

[vc_empty_space][vc_empty_space]

Sound absorption of extracted pineapple-leaf fibres

Putra A.a, Or K.H.a, Selamat M.Z.a, Nor M.J.M.a, Hassan M.H.a, Prasetiyo I.b

a ViBRO Research Group, Centre for Advanced Research on Energy, Universiti Teknikal Malaysia Melaka, Malaysia
b Acoustic Laboratory, Department of Engineering Physics, Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 Elsevier LtdThis paper reports the utilisation of fibres from the pineapple leaf (PALF) to be an alternative natural acoustic material. We fabricated samples from raw pineapple leaf fibres with different densities and thicknesses to observe their effects on the sound absorption characteristic. Measurement was conducted for the normal incidence sound absorption coefficient in an impedance tube based on ISO 10534-2. It reveals that the pineapple leaf fibres can achieve sound absorption coefficient of 0.9 on average above 1 kHz by controlling the densities of the fibres and/or by introducing the air gap behind the samples. It is also demonstrated that the sound absorption performance is similar to that of the commercial rock wool fibres and synthetic polyurethane foam.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Acoustic materials,Different densities,Normal incidence,Polyurethane Foam,Sound absorber,Sound absorption,Sound absorption characteristic,Sound absorption coefficients[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Acoustic material,Natural fibres,Pineapple leaf fibres,Sound absorber,Sound absorption coefficient[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]Part of this research is supported under the Fundamental Research Grant Scheme No. FRGS/1/2016/TK03/FTK/CARE/F00323 provided by the Ministry of Higher Education, Malaysia (MoHE). Authors would also like to acknowledge the MyBrain UTeM scholarship from Universiti Teknikal Malaysia Melaka which also has made this research possible.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.apacoust.2018.01.029[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]