[vc_empty_space][vc_empty_space]
Some cycle-supermagic labelings of the calendula graphs
Pradipta T.R.a, Salman A.N.M.b
a Mathematics Education, Universitas Muhammadiyah Prof. DR. HAMKA, Jakarta, Indonesia
b Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.In this paper, we introduce a calendula graph, denoted by Clm,n . It is a graph constructed from a cycle on m vertices Cm and m copies of Cn which are Cn1, Cn2 , ⋯, Cnm and grafting the i-th edge of Cm to an edge of in Cni for each i ∈ {1,2,⋯,m}. A graph G = (V, E) admits a Cn -covering, if every edge e ∈ E(G) belongs to a subgraph of G isomorphic to Cn . The graph G is called cycle-magic, if there exists a total labeling φ: V ∪ E → {1,2,…,|V|+|E|} such that for every subgraph Cn ′ = (V′,E′) of G isomorphic to Cn has the same weight. In this case, the weight of Cn , denoted by φ(Cn is defined as ∑v∈V(C’n) φ(v) + ∑e∈E(C’n φ(e). Furthermore, G is called cycle-supermagic, if φ:V→{1,2,…,|V|}. In this paper, we provide some cycle-supermagic labelings of calendula graphs. In order to prove it, we develop a technique, to make a partition of a multiset into m sub-multisets with the same cardinality such that the sum of all elements of each sub-multiset is same. The technique is called an m-balanced multiset.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Cardinalities,Graph G,Labelings,Multi-sets,Multiset,Subgraphs[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1742-6596/948/1/012071[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]