Enter your keyword

2-s2.0-85042915622

[vc_empty_space][vc_empty_space]

Simulated annealing heuristic for the general share-a-ride problem

Yu V.F.a, Purwanti S.S.a,b, Redi A.A.N.P.a,e, Lu C.-C.c, Suprayogi S.b, Jewpanya P.a,d

a Department of Industrial Management, National Taiwan University of Science and Technology, Taipei, Taiwan
b Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia
c Department of Transportation and Logistics Management, National Chiao Tung University, Hsinchu, Taiwan
d Department of Industrial Engineering, Rajamangala University of Technology Lanna, Tak, Thailand
e Department of Logistics Engineering, Universitas Pertamina, Jakarta, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 Informa UK Limited, trading as Taylor & Francis Group.This research introduces an extension of the share-a-ride problem (SARP), called the general share-a-ride problem (G-SARP). Similarly to SARP. taxi in G-SARP can service passenger and package requests at the same time. However, G-SARP allows the taxi to transport more than one passenger at the same time, which is more beneficial in practical situations. In addition, G-SARP has no restrictions on the maximum riding time o. passenger, and the number of parcel requests that can be inserted between the pick-up and drop-off points o. passenger is limited only by vehicle capacity. simulated annealing (SA) algorithm is proposed to solve G-SARP. The proposed SA algorithm is compared with basic SA and tabu search (TS) algorithms. The results show that the proposed SA algorithm outperforms basic SA and TS algorithms. Moreover, further analysis shows that G-SARP solutions are better than those of SARP in most cases.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]General share-a-ride problem,Ride-sharing,SA algorithm,share-a-ride problem,Simulated annealing algorithms,Tabu search algorithms,TS-algorithms,Vehicle capacity[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]General share-a-ride problem,ride sharing,share-a-ride problem,simulated annealing[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This research was partially supported by the Ministry of Science and Technology of the Republic of China (Taiwan) [grant numbers MOST 106-2410-H-011-002-MY3 and MOST 105-2811-E-011-017].[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1080/0305215X.2018.1437153[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]