Enter your keyword

2-s2.0-85044370387

[vc_empty_space][vc_empty_space]

Bioconversion studies of methyl laurate to dodecanedioic acid using a wild-type of Candida tropicalis

Akmalina R.a, Purwadi R.a, Sitompul J.a

a Chemical Engineering Department, Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© The Authors, published by EDP Sciences, 2018.Production of dodecanedioic acid (DDDA), a platform chemical used as raw material for various commodities and polymers, has been studied through a biological process. This process was conducted by using a wild-type of Candida tropicalis which can be obtained easily from natural resources. The aim of this research was to study the characteristics of DDDA production from methyl laurate through batch fermentation process. Growth phase was carried out for 20 h, as the beginning of fermentation, then continued to conversion phase for 5 until 6 days. Utilization of methyl laurate and production of DDDA were analysed using gas chromatography, which proved the ability of C. tropicalis in assimilating methyl laurate to convert it become DDDA. The highest value of cells yield (Yx/s) and DDDA yield (Yp/s) successfully obtained were 0.86 g cells/g methyl laurate and 0.20 g DDDA/g methyl laurate, respectively. This study also showed the possibility of fermentation products accumulation as intermediate, or accumulation of DDDA inside the cells. Thus, this study can be applied as an alternative in addition to the use of mutant microorganism in producing DDDA.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Batch fermentation process,Biological process,Candida tropicalis,Fermentation products,Growth phase,Methyl laurate,Platform chemicals,Tropicalis[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work was financially supported by Korea Institute of Bioscience and Biotechnology (KRIBB).[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1051/matecconf/201815601001[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]