[vc_empty_space][vc_empty_space]
Mass Balances and Thermodynamics Study of Thermal Triglyceride Hydrolysis
Istyami A.N.a, Soerawidjaja T.H.a, Prakoso T.a
a Department of Chemical Engineering, Institut Teknologi, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© The Authors, published by EDP Sciences, 2018.Triglyceride hydrolysis is a process to convert triglyceride into fatty acids and glycerol, which are important precursors in oleochemical industry. Commercial technology of triglyceride hydrolysis established at the present time is thermal hydrolysis (a.k.a. Colgate-Emery process), which operates in robust condition (250°C, 50 bar). Although this technology has been the most preferable process to produce fatty acid for a century, but information published about its process parameters is limited. In this study, an analysis of mass balances and thermodynamic aspects of thermal hydrolysis of triglyceride was performed based on literature review. Composition of input and output process stream shows some indication of polymerization and/or hydrogenation reaction of linoleic and linolenic acid, and also geometric isomerization of oleic acid. Thermodynamic feasibility of reaction was compared between high temperature and room temperature. In the near future, more energy-efficient and less-side reaction technology to produce fatty acids seems to compete with this conventional process.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Commercial technology,Hydrogenation reactions,Linoleic and linolenic acids,Literature reviews,Oleochemical industry,Process parameters,Thermodynamic aspects,Thermodynamic feasibility[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1051/matecconf/201815605013[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]