[vc_empty_space][vc_empty_space]
Use of the Kalina cycle as a bottoming cycle in a geothermal power plant: Case study of the Wayang Windu geothermal power plant
Prananto L.A.a, Zaini I.N.a, Mahendranata B.I.b, Juangsa F.B.a, Aziz M.a, Soelaiman T.A.F.b
a Department of Mechanical Sciences and Engineering, Tokyo Institute of Technology, Tokyo, Japan
b Department of Mechanical Engineering, Institut Teknologi Bandung, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 Elsevier LtdThis study focuses on the use of brine discharged from geothermal fluid at the Wayang Windu geothermal power plant. The Kalina cycle system (KCS) is investigated in an effort to generate electricity from the unused brine. This scheme develops KCS 11 owing to good performance at low to mid-range temperatures. Owing to impurities and the SiO2 content in brine, the brine temperature at the outlet of the evaporator is maintained higher than the minimum silica saturation index standard. The ideal performance of the system is obtained with the optimization of the ammonia–water mixture and pinch temperature of the heat exchangers. Moreover, heat exchanger utilities (i.e., evaporators and recuperators) are designed in detail to analyze the feasibility of the system. An air-cooled condenser is adopted in the system owing the remote location surrounded by mountains. The designed system generates 1660.30 kW of electricity with thermal efficiency of 13.20%. Considering the zero cost of brine, this system is expected to be the solution for optimizing electricity generation in Indonesia.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Air-cooled condensers,Bottoming cycle,Electricity generation,Generate electricity,Ideal performance,Kalina cycle,Thermal efficiency,Wayang Windu[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Bottoming cycle,Geothermal power plant,Heat exchanger,Kalina cycle,Wayang Windu[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The authors express their great appreciation to Star Energy Geothermal Wayang Windu Ltd. for assistance in providing data required for this study. This study is supported by the Indonesia Endowment Fund for Education (LPDP).[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.applthermaleng.2018.01.003[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]