Enter your keyword

2-s2.0-85044954496

[vc_empty_space][vc_empty_space]

Circuit analysis of coupled lines and open stubs based UWB microstrip BPF

Munir A.a

a Radio Telecommunication and Microwave Laboratory, School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 Electromagnetics Academy. All rights reserved.This paper presents the circuit analysis of ultra-wideband (UWB) microstrip bandpass filter (BPF) which is designed based on coupled lines and open stubs. The filter is proposed to have UWB characteristic response required for surface penetrating radar (SPR) application. The circuit analysis is performed based on transmission line model both for coupled lines and open stubs, and then characterized using circuit & EM simulator. In comparison to the analysis result, the designed UWB microstrip BPF is simulated using 3D EM simulator software. Here, the proposed filter is deployed on a grounded FR4 Epoxy dielectric substrate with the thickness of 0.8 mm. From the circuit analysis result, it shows that the proposed UWB microstrip BPF has -3 dB working bandwidth of 4.31 GHz ranges from the frequency of 1.97 GHz to 6.28 GHz yielding UWB response which is comparable with the result of 3D EM simulator. The minimum insertion loss and maximum return loss in the passband area are 0.47 dB and 11.42 dB at the frequency of 5.45 GHz, respectively.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Coupled lines,Dielectric substrates,Microstrip bandpass filters,Microstripes,Return loss,Simulator software,Surface penetrating radar,Transmission line modeling[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The author wishes to express sincere gratitude to the Ministry of Research, Technology, and Higher Education, the Republic of Indonesia who supported financially for travel grant to attend PIERS2017 St Petersburg, Russia.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/PIERS.2017.8262131[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]