[vc_empty_space][vc_empty_space]
Design of Fractal Features-Based Partial Discharge Pattern Recognition using Multi Support Vector Machine Method
Rahayua, Anuraga G.T.a, Prasetia H.a, Khayam U.a
a Bandung Institute of Technology, School of Electrical Engineering and Informatics, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© The Authors, published by EDP Sciences, 2018.Partial Discharge (PD) is one of the causes of insulation deteriorisation mode and impacts on the reliability of high voltage equipment. Therefore, PD measurement is used for diagnostic technique of high voltage equipment. Diagnostic output of high voltage equipment contain information about PD type, PD cause, PD location and PD severity. after identification, a proper preventive maintenance pattern can be performed. Therefore PD pattern recognition system is very important on PD diagnostic system to recognize the PD pattern and determine the level of hazard that occurs in specimen object or high voltage equipment. In this paper, PD pattern recognition system is designed with fractal geometry approach and support vector machine (SVM) algorithm. The coding and programming of graphical user interface of the application is done. Each PD type and hazard level on various insulating materials (solid, liquid and gas) have the dimensions of the fractal and the lacunarity. The type of PD (void, corona) and its danger level (bad, fair and good) can be identified with the support vector machine (SVM).[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Diagnostic techniques,Fractal feature,Fractal geometry,High-voltage equipments,Partial discharge pattern recognition,PD measurements,Recognition systems,Support vector machine algorithm[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1051/matecconf/201815902048[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]