[vc_empty_space][vc_empty_space]
Experimental study on textile properties for wearable absorber using cavity method
Nur L.O.a, Nugroho B.S.a, Munir A.b
a School of Electrical Engineering, Telkom University, Bandung, Indonesia
b Radio Telecommunication and Microwave Laboratory School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 Electromagnetics Academy. All rights reserved.The information of textile properties is one of important things in the design of wearable absorber. In this paper, the experimental study of textile properties focused on its relative permittivity is presented based on the cavity reflection transmission-perturbation method. The technique that utilizes a rectangular waveguide is expected to produce high accuracy of property measurement since it combines the reflection-transmission method and cavity perturbation method. Prior to the textile relative permittivity measurement, the proposed method is numerically analyzed and then experimentally examined for some known dielectric materials. From the characterization, the measurement result of relative permittivity for some textiles has some differences which depend on the raw material of each textile. It shows that the proposed method is suitable for the measurement of textile properties which are useful in the design of wearable absorber.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Cavity method,Cavity perturbation method,Perturbation method,Property measurement,Reflection transmissions,Reflection-transmission methods,Relative permittivity,Textile properties[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work is partially supported by the Applied Product Research Program (Penelitian Produk Terapan) FY2017 from the Ministry of Research, Technology, and Higher Education, the Republic of Indonesia, under Contract No. 1603/K4/KM/2017. The authors would like to thank Mr. Zenal Aripin from the Radio Telecommunication and Microwave Laboratory, School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia, for assistance in experimental characterization.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/PIERS-FALL.2017.8293606[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]