[vc_empty_space][vc_empty_space]
Optimal assets allocation for risk averse investor under market risks and credit risk
Rizal N.A., Wiryono S.K., Prasetyo A.D.
a Institut Teknologi Bandung, Telkom University, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018, Universiti Malaysia Sarawak. All Rights Reserved.This research will study a reduced form model for optimal investment with a defaultable corporate bond under the market risks (deterministic rate of return and inflation risk), and credit risk. Those aforementioned risks are influenced by macro-economic, and considered as an exogenous risk. For inflation rate and credit spread rate will be modelled under the Vasicek model. By using Vasicek model, the mean reverting behaviour of the rates will be reached, since this model tends to have a constant mean in long term period. The data will be taken from the Indonesian rate of inflation (from January 2010 to December 2015). Further, this calculation will be solved using Stochastic Dynamic Programming. The closed form solution will give the proportion of wealth between bond and money account. Furthermore, the composition of the portfolio will be given as the result. The complicated equation of bond pricing will follow recovery market value (RMV) methods. Last the simulated data will be given to validate and calibrate the finding model.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Asset allocation,Credit spread rate,Dynamic statistic programming,Optimal portfolio,Vasicek model[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]