Enter your keyword

2-s2.0-85045687712

[vc_empty_space][vc_empty_space]

A Model of Batch Scheduling for a Single Batch Processor with Additional Setups to Minimize Total Inventory Holding Cost of Parts of a Single Item Requested at Multi-due-date

Halim A.H.a, Ernawatib, Hidayat N.P.A.c

a Manufacturing Systems Research Group, Department of Industrial Engineering, Bandung Institute of Technology, Bandung, Indonesia
b Department of Industrial Engineering, Sekolah Tinggi Teknik Cipasung, Tasikmalaya, Indonesia
c Department of Industrial Engineering, Jenderal Achmad Yani University, Cimahi, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.This paper deals with a model of batch scheduling for a single batch processor on which a number of parts of a single items are to be processed. The process needs two kinds of setups, i. e., main setups required before processing any batches, and additional setups required repeatedly after the batch processor completes a certain number of batches. The parts to be processed arrive at the shop floor at the times coinciding with their respective starting times of processing, and the completed parts are to be delivered at multiple due dates. The objective adopted for the model is that of minimizing total inventory holding cost consisting of holding cost per unit time for a part in completed batches, and that in in-process batches. The formulation of total inventory holding cost is derived from the so-called actual flow time defined as the interval between arrival times of parts at the production line and delivery times of the completed parts. The actual flow time satisfies not only minimum inventory but also arrival and delivery just in times. An algorithm to solve the model is proposed and a numerical example is shown.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]additional setups,Batch processors,Batch-scheduling,Flow-time,Inventory holding[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]actual flow time,additional setups,batch processor,batch scheduling,inventory holding cost[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1757-899X/319/1/012082[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]