Enter your keyword

2-s2.0-85045694812

[vc_empty_space][vc_empty_space]

The effect of addition of PTFE or urea on luminescence response of copper-doped lithium tetraborate

Iskandar F.a, Fajri A.a, Nuraeni N.a,b, Stavila E.a, Aimon A.H.a, Nuryadin B.W.c

a Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
b Work Safety and Dosimetry Group, Center for Radiation Safety Technology Metrology, National Nuclear Energy Agency, Jakarta Selatan, 12070, Indonesia
c Department of Physics, UIN Sunan Gunung Djati Bandung, Bandung, 40614, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 IOP Publishing Ltd.Lithium tetraborate (Li2B4O7) is a promising material for application in personal dosimetry due to its tissue equivalent properties. The addition of copper as a dopant in Li2B4O7 is known to increase the sensitivity for both photoluminescent (PL) and thermoluminescent (TL) emission. Therefore, in this paper, synthesis of Li2B4O7:Cu is reported. The optimum synthesis condition was achieved using the solution-assisted method, followed by calcination at 700 °C for 2 h. The addition of 0.1 wt% Cu resulted in the highest PL and TL emissions. Further investigation of the influence of polytetrafluoroethylene (PTFE) or urea addition on the luminescence response of Li2B4O7:Cu is described. All samples were characterized by x-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometry, photoluminescence spectrofluorophotometer, thermoluminescence reader, scanning electron microscopy (SEM), and energy dispersive x-ray (EDX) spectroscopy. The addition of PTFE decreased the PL emission of the Li2B4O7:Cu but slightly increased its TL emission. Meanwhile, the addition of urea increased the luminescence emission for both PL and TL of the Li2B4O7:Cu.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Attenuated total reflectance Fourier transform infrared,Effect of addition,Energy dispersive x-ray,Lithium tetraborate,Luminescence emission,Optimum synthesis,PL emission,Polytetrafluoroethylene (PTFE)[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]lithium tetraborate,photoluminescence,PTFE,thermoluminescence,TLD,urea[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/2053-1591/aab8eb[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]