Enter your keyword

2-s2.0-85045762701

[vc_empty_space][vc_empty_space]

Staggered grid implementation of 1D Boussinesq model for simulating dispersive wave

Adytia D.a, Tarwidi D.a, Kifli S.A.a, Pudjaprasetya S.R.b

a School of Computing, Telkom University, Bandung, 40257, Indonesia
b Industrial and Financial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 Published under licence by IOP Publishing Ltd.In this paper, a numerical implementation of 1D Variational Boussinesq (VB) wave model in a staggered grid scheme is discussed. The staggered grid scheme that is used is based on the idea proposed by Stelling & Duinmeijer (2003) who implemented the scheme in a non-dispersive Shallow Water Equations in a conservative form. Here, we extend the idea of the staggered scheme to be applied for VB wave model. To test the accuracy of the implementation, we test the numerical implementation of VB wave model for simulating propagation of solitary wave against analytical solution. Moreover, to test dispersiveness of the model, we simulate a standing wave against analytical solution. Results of simulations show a good agreement with analytical solutions.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Boussinesq model,Dispersive waves,Numerical implementation,Shallow water equations,Staggered grid,Staggered grid schemes,Staggered schemes,Standing wave[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1742-6596/971/1/012020[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]