Enter your keyword

2-s2.0-85046261784

[vc_empty_space][vc_empty_space]

Spiral-shaped printed planar inverted-F antenna for body wearable application

Harish A.a, Hidayat M.R.b, Nur L.O., Nugroho B.S., Munir A.a

a Radio Telecommunication and Microwave Laboratory, School of Electrical Engineering and Infomatics, Institut Teknologi Bandung, Indonesia
b Department of Electrical Engineering, Faculty of Engineering, Universitas Jenderal Achmad Yani, Cimahi, Indonesia
c School of Electrical Engineering, Telkom University, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2017 IEEE.This paper presents a spiral-shaped printed planar inverted-F antenna (PIFA) for body wearable application. A combination method between planar inverted-F technique and geometry modification is implemented for reducing the physical dimension of proposed antenna. The antenna which is intended to work at the frequency of 920MHz is designed and implemented using a circular shape of FR4 epoxy dielectric substrate with the thickness and diameter of 0.8mm and 18mm, respectively. Prior hardware realization, the parameters of antenna such as reflection coefficient, working bandwidth, gain, and radiation pattern are numerically investigated to achieve the design with optimum performance. Meanwhile from the characterization, the measurement result indicates that the realized antenna has the resonant frequency of 911MHz with -10dB measured working bandwidth of 20MHz and gain of -30.79dBi. This achievement could be beneficial for body wearable application such as implantable antenna.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Dielectric substrates,Geometry modifications,Hardware realization,Implantable antennas,Optimum performance,Planar inverted-F antenna,spiral-shaped,Wearable applications[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]body wearable application,implantable antenna,printed planar inverted-F antenna (PIFA),spiral-shaped[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work is partially supported by the Applied Product Research Program (Penelitian Produk Terapan) FY2017 from the Ministry of Research, Technology, and Higher Education, the Republic of Indonesia, under Contract No. 1603/K4/KM/2017.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/TSSA.2017.8272937[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]