Enter your keyword

2-s2.0-85046849472

[vc_empty_space][vc_empty_space]

Line following control of an autonomous truck-Trailer

Widyotriatmo A.a, Siregar P.I.a, Nazaruddin Y.Y.a

a Instrumentation and Control Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2017 IEEE.This paper presents the line following control of a truck-Trailer. The control architecture of the truck-Trailer is also proposed. To cope with the autonomous application of the truck-Trailer the kinematics of truck-Trailer is derived and the mapping of the control actuators in the head-Truck which are the steering angle and the traction to the posture of the trailer is conducted. The geometrical schematic between the truck trailer and the path to be followed is explored so that the error dynamics between the configuration of truck-Trailer and the path are formulated. The path following control is designed based on the Lyapunov method and the global asymptotic stability of the origin of error variables is shown. Optimization of the control parameters is performed to include the constraints of the truck-Trailer maneuver. Simulation results of a truck-Trailer following rectangular-shaped path are conducted to show the efficiency of the proposed method.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Control architecture,Control parameters,Global asymptotic stability,Line following control,Non linear control,Nonholonomic systems,Path following control,Rectangular-shaped[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]line following control,Lyapunov-based method,mobile robot,nonholonomic system,nonlinear control,truck-Trailer[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]V. ACKNOWLEDGMENT This work was supported by the Ministry of Research, Technology, and Higher Education of Indonesia.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ROBIONETICS.2017.8203431[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]