[vc_empty_space][vc_empty_space]
The Development of a Web-Based Urban Soundscape Evaluation System
a Building Physics and Acoustic Laboratory, Institut Teknologi Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.Acoustic quality is one of the important aspects of urban design. It is usually evaluated based on how loud the urban environment is. However, this approach does not consider people’s perception of the urban acoustic environment. Therefore, a different method has been developed based on the perception of the acoustic environment using the concept of soundscape. Soundscape is defined as the acoustic environment perceived by people who are part of the environment. This approach considers the relationship between the sound source, the environment, and the people. The analysis of soundscape considers many aspects such as cultural aspects, people’s expectations, people’s experience of space, and social aspects. Soundscape affects many aspects of human life such as culture, health, and the quality of life. Urban soundscape management and planning must be integrated with the other aspect of urban design, both in the design and the improvement stages. The soundscape concept seeks to make the acoustic environment as pleasant as possible in a space with or without uncomfortable sound sources. Soundscape planning includes the design of physical features to achieve a positive perceptual outcome. It is vital to gather data regarding the relationship between humans and the components of a soundscape, e.g., sound sources, features of the physical environment, the functions of a space, and the expectation of the sound source. The data can be measured and gathered using several soundscape evaluation methods. Soundscape evaluation is usually conducted using in-situ surveys and laboratory experiments using a multi-speaker system. Although these methods have been validated and are widely used in soundscape analysis, there are some limitations in the application. The in-situ survey needs to be done at one time with many people at the same time because it is hard to replicate the acoustic environment. Conversely, the laboratory experiment does not have a problem with the repetition of the experiment. This method requires a room with a multi-speaker reproduction system. This project used a different method to analyse soundscape developed using headphones via the internet. The internet system for data gathering has been established; a website has enabled to reproduce high-quality audio and it has a system to design online questionnaires. Furthermore, the development of a virtual reality system allows the reproduction of virtual audio-visual stimulus on a website. Although the website has an established system to gather the required data, the problem is the validation of the reproduction system for soundscape analysis, which needs to be done with consideration of several factors: the suitable recording system, the effect of headphone variation, the calibration of the system, and the perception result from internet-based acoustic environment reproduction. This study aims to develop and validate a web-based urban soundscape evaluation method. By using this method, the experiment can be repeated easily and data can be gathered from many respondents. Furthermore, the simplicity of the system allows for the application by the stakeholders in urban design. The data gathered from this system is important for the design of an urban area with consideration of the acoustic aspects.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Acoustic environment,Audio-visual stimulus,Laboratory experiments,Online questionnaire,Physical environments,Uncomfortable sounds,Urban environments,Virtual reality system[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1755-1315/158/1/012052[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]