[vc_empty_space][vc_empty_space]
3D long-range magnetic ordering in (C2H5NH3)2CuCl4 compound revealed by internal magnetic field from muon spin rotation and first principal calculation
Suprayoga E.a, Nugroho A.A.a, Onggo D.a, Polyakov A.O.b, Palstra T.T.M.b, Watanabe I.c
a Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
b Zernike Institute for Advanced Materials, University of Groningen, Groningen, 9747, Netherlands
c Advanced Meson Science Laboratory, RIKEN Nishina Center, Saitama, 351-0198, Japan
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 Elsevier B.V.We report the results of muon spin rotation measurement that reveal a 3D long-range magnetic ordering in the inorganic CuCl4 layers separated by (C2H5NH3) organic ligands. The measured temperature dependent internal magnetic field down to 300 mK shows the 3D long-range magnetic ordering with magnetic transition at the Néel temperature of TN = 10.06 K and critical exponent of 0.31. The ground state internal dipole field is calculated by considering muon zero-point motion effect at the muon stop position determined by first principal DFT calculation, in combination with magnetization density calculated on the basis of a specific magnetic structure model. The calculated result is shown in good agreement with the measured value of internal field at the ground state temperature, thereby justifying the magnetic structure model adopted for this system and explaining the 3D nature of magnetic ordering. This model may therefore be applicable to the study of other magnetic materials.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]DFT calculation,Dipole fields,First-principal calculations,Internal magnetic fields,Long range magnetic order,Measured temperatures,Muon stop position,Zero point motion[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Density dipole field,DFT calculation,Magnetization,Muon stop position,Muon zero-point motion[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]We acknowledge International Program Associate (IPA) RIKEN and the Directorate of Higher Education, Indonesia (DIKTI) , and P3MI-ITB 2017 for the financial support. We thanks to RIKEN Integrated Cluster of Clusters (RICC) for the computing resources and RIKEN-RAL muon facilities for the technical support. Special thanks to Ikuto Kawasaki and M. O. Tjia for valuable discussions.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.physb.2018.06.001[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]