[vc_empty_space][vc_empty_space]
Shared-hidden-layer deep neural network for under-resourced language the content
Hoesen D.a, Lestari D.P.a, Widyantoro D.H.a
a Department of Informatics, Institut Teknologi Bandung, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 Universitas Ahmad Dahlan.Training speech recognizer with under-resourced language data still proves difficult. Indonesian language is considered under-resourced because the lack of a standard speech corpus, text corpus, and dictionary. In this research, the efficacy of augmenting limited Indonesian speech training data with highly-resourced-language training data, such as English, to train Indonesian speech recognizer was analyzed. The training was performed in form of shared-hidden-layer deep-neural-network (SHL-DNN) training. An SHL-DNN has language-independent hidden layers and can be pre-trained and trained using multilingual training data without any difference with a monolingual deep neural network. The SHL-DNN using Indonesian and English speech training data proved effective for decreasing word error rate (WER) in decoding Indonesian dictated-speech by achieving 3.82% absolute decrease compared to a monolingual Indonesian hidden Markov model using Gaussian mixture model emission (GMM-HMM). The case was confirmed when the SHL-DNN was also employed to decode Indonesian spontaneous-speech by achieving 4.19% absolute WER decrease.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Deep neural network,Grapheme-to-phoneme,Indonesian,Shared hidden layer,Under-resourced[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.12928/TELKOMNIKA.v16i3.7984[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]