Enter your keyword

2-s2.0-85048774771

[vc_empty_space][vc_empty_space]

PSO Based PID Controller for Quadrotor with Virtual Sensor

Nazaruddin Y.Y.a, Andrini A.D.a, Anditio B.a

a Instrumentation and Control Research Group, Department of Engineering Physics, Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018Recent development and implementation on intelligent control system has lead to the development of virtual sensing system technology. Virtual sensing system allows immeasureable state variables to be accurately predicted, which is very beneficial to reduce the amount of sensors required to monitor and control a system, especially for the case of controlling a quadrator. This paper proposes a novel technique to design a PID control using virtual sensing system, consisting of Diagonal Recurrent Neural Network (DRNN) and Extended Kalman Filter (EKF), which predicts the immeasureable states of the quadrator system based on the current states and control inputs. A bio-inspired optimization technique, Particle Swarm Optimization (PSO), is proposed to be applied in DRNN to avoid any possibilities from local extreme condition. Further, a PSO based PID position controller is also developed to be integrated with the designed virtual sensing system to control a quadrator.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Bio-inspired optimizations,Diagonal recurrent neural networks,Monitor and control,Novel techniques,PID controllers,Position controller,Quad rotors,Virtual sensor[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Diagonal Recurrent Neural Network,Extended Kalman Filter,Particle Swarm Optimization,PID Controller,Quadrotor,Virtual Sensor[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.ifacol.2018.06.091[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]