[vc_empty_space][vc_empty_space]
Numerical model of sedimentation and water quality in Kerinci Lake
a Faculty of Civil and Environmental Engineering, Institut Teknologi, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018, Int. J. of GEOMATE.A study of Kerinci Lake in the Province of Jambi, Sumatera Island of Indonesia, is conducted to formulate future actions to conserve the area. The purpose of the study is to investigate the distribution of four parameters [total suspended sediment (TSS), biochemical oxygen demand (BOD), dissolved oxygen (DO), and phosphate]. The study includes field measurements and a numerical model, resulting in a time series of spatial distributions of the hydro-environmental parameters mentioned. The numerical model is driven by discharges from six rivers and generated using a Surface-water Modeling System (called SMS). SMS consists of modules RMA2 for flow modeling, RMA4 for contaminant transport modeling, and SED2D for sedimentation modeling. The result of RMA2 shows an acceptable agreement with the water level and current velocity field measurement data. The model is then developed into a sedimentation and water quality model using SED2D and RMA4, resulting in a yearly change of the investigated parameters. The results show that Tebing Tinggi River outlet has the biggest yearly bed change of around 0.3 m, caused by the high TSS value in the river. The water quality model shows that the BOD, DO, and phosphate concentrations of Merao River outlet are as expected as it has significantly bigger discharges than the other rivers. It is recommended that local authorities provide wastewater treatment facilities, particularly in Merao River, to maintain the sustainability of Kerinci Lake.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Kerinci Lake,Lake processes,Numerical modeling,Sedimentation,Water quality[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The authors would like to thank the Indonesian Ministry of Public Work and Housing for funding this research and also the Indonesian Ministry of Environment and Forests for providing the open access document of Germadan of Kerinci Lake.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.21660/2018.51.85592[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]