Enter your keyword

2-s2.0-85049344918

[vc_empty_space][vc_empty_space]

AHP and dynamic shortest path algorithm to improve optimum ambulance dispatch in emergency medical response

Laksono P.a, Wulan S.R.a, Supangkat S.H.a, Sunindyo W.D.a

a Information Technology Research Division, SEEI, Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2017 IEEE.As a citizen-centered service, Medical Emergency Response (MER) still finds several problems in taking the right actions in allowable critical period of time. The root cause of this problem lies on the non-integrated data sources and also the heterogeneous nature of the data involved in taking the right actions. Therefore, in order to support quick and accurate decision making, a method to determine the best ambulance and hospitals among the available alternatives is necessary. The approach used in this research is to use Analytic Hierarchy Process (AHP) that utilizes the data collected from the sources, and a dynamic shortest path algorithm to enable quick and accurate decision of optimum ambulance dispatch in a medical emergency. The observed improvement from several simulations shows that the time required by a dispatch officer to decide upon the best alternative has been reduced significantly, while the travel time of the ambulance unit to the patient’s location can still be improved with better ambulance unit distribution.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Analytic hierarchy process (ahp),Critical periods,Dynamic shortest path algorithm,Integrated data,Medical emergency,Root cause,Shortest path[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]dynamic,medical emergency response,shortest path,smart city[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICTSS.2017.8288879[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]