[vc_empty_space][vc_empty_space]
Sparse signal reconstruction using weight point algorithm
Usman K.a,b, Gunawan H.a, Suksmono A.B.a
a School of Electrical Engineering & Informatics Bandung Institute of Technology (ITB), Bandung, 40132, Indonesia
b Faculty of Electrical Engineering, Telkom University, Bandung, 40257, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 Published by ITB Journal Publisher.In this paper we propose a new approach of the compressive sensing (CS) reconstruction problem based on a geometrical interpretation of l1-norm minimization. By taking a large l1-norm value at the initial step, the intersection of l1-norm and the constraint curves forms a convex polytope and by exploiting the fact that any convex combination of the polytope’s vertexes gives a new point that has a smaller l1-norm, we are able to derive a new algorithm to solve the CS reconstruction problem. Compared to the greedy algorithm, this algorithm has better performance, especially in highly coherent environments. Compared to the convex optimization, the proposed algorithm has simpler computation requirements. We tested the capability of this algorithm in reconstructing a randomly down-sampled version of the Dow Jones Industrial Average (DJIA) index. The proposed algorithm achieved a good result but only works on real-valued signals.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Compressive sampling,Convex combination,Convex polytope,L1-norm,Sparse reconstruction,Weight point[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.5614/itbj.ict.res.appl.2018.12.1.3[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]