Enter your keyword

2-s2.0-85049627350

[vc_empty_space][vc_empty_space]

Bonding state energy of metal nanoparticle dimer and its dependence on nanosphere size and interparticle separation

Stephanie M.V.a, Iskandar A.A.a, Tjia M.-O.a

a Physics of Magnetism and Photonic Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 World Scientific Publishing Company.A study is conducted regarding the effects of particle size (r) and interparticle separation (x) on the electromagnetic (plasmon) coupling in a dimer of two identical metal nanospheres. The dimer states are modeled as the hybridized bonding and antibonding states of two isolated plasmon states, with the associated energies given in terms of the isolated plasmon energy (α), the coupling energy (β) and the overlap integral (S) of the constituent plasmonic fields. The resonance absorption energies of the isolated plasmon and the dimer in certain dielectric medium are calculated according to the Mie theory for incident light of parallel polarization along the dimer axis. The results are fitted with the bonding state energies of both Au and Ag nanosphere dimers for r ranging within 10-20nm and x varied within 30-200nm in compliance with the restricted consideration of dipole absorption spectra. The excellent fits of the bonding state energies E- for the ranges of r and x variations are consistently achieved with R2 around 0.99 by a single function of the form E-(x,r)=α(r)-[b(r)x2]exp[c(r)x] where α(r),b(r) and c(r) vary with the nanosphere materials and the surrounding media considered. This result suggests the possible relation of the best fitted functional form E- with the underlying physical mechanism.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Bonding and antibonding state,Homodimers,Inter-particle separation,Overlap integrals,Parallel polarization,Physical mechanism,Plasmon hybridization,Resonance absorption[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Coupling,homodimer,nanospheres,overlap integral,plasmon hybridization[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work was supported by Program Unggulan Perguruan Tinggi Dikti 2017 from the Indonesian Ministry of Research, Technology and Higher Education, under Contract No. 3091s/I1.C01.2/KU/2017.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1142/S0218863518500182[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]