Enter your keyword

2-s2.0-85050794516

[vc_empty_space][vc_empty_space]

Cognitive artificial intelligence (CAI) software based on knowledge growing system (KGS) for diagnosing heart block and arrythmia

Sereati C.O.a,b, Sumari A.D.W.a, Adiono T.a, Ahmad A.S.a

a Cognitive Artificial Intelligence Research Group (CAIRG), School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Indonesia
b Department of Electrical Engineering, Universitas Katolik Indonesia Atma Jaya, Jakarta, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2017 IEEE.This paper describes the application of Cognitive Artificial Intelligence (CAI) Software to help reading the diagnosis of cardiac abnormalities obtained from electrocardiogram (ECG) charts. Based on Knowledge Growing System (KGS) algorithm, the CAI software performs hypothetical information processing and indication of cardiac abnormalities caused by Heart Block and Arrythmia. The result shows that this software can analyze the tendency of heart conditions, based on the observations related to indications and hypotheses of heart abnormalities. The output of the software is a graph showing the condition of cardiac health and the tendency of cardiac abnormalities as observed by the ECG.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]cardiac abnormality,Cardiac health[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]CAI,cardiac abnormality,ECG,KGS[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICEEI.2017.8312368[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]