Enter your keyword

2-s2.0-85051008385

[vc_empty_space][vc_empty_space]

Distributed resilient tracking control of a vehicle platoon under communication imperfection

Tamba T.A.a,b, Nazaruddin Y.Y.b,c

a Department of Electrical Engineering, Parahyangan Catholic University, Indonesia
b National Center for Sustainable Transportation Technology, CRCS Building, Bandung, Indonesia
c Instrumentation and Control Research Group, Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2017 IEEE.This paper presents a distributed resilient control approach for a vehicle platooning system wherein the utilized communication network is subject to a type of cyber attack called denial-of-service. The proposed approach is designed using the recently developed event-triggered control design formalism whereby control signals are updated aperiodically and only when some measures/novelties regarding the performance or internal dynamics of the system occur. Using Lyapunov’s stability analysis method, it is shown that the proposed control strategy is capable of mitigating denial-of-service attacks when their frequency of occurrences satifies certain regularity criteria.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Control strategies,Cyber-attacks,Event-triggered controls,Internal dynamics,Lyapunov’s stability,Resilient control,Tracking controls,Vehicle platoons[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]cyber attacks,resilient control,vehicle platoon[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]ACKNOWLEDGMENT This research was financially supported by the Ministry of Research, Technology and Higher Education (Kemenristekdikti) of the Republic of Indonesia under the Fundamental Research scheme, Institut Teknologi Bandung, Indonesia, 2016–2017. The authors also gratefully acknowledge partial funding support from the USAID under the SHERA program.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICEVT.2017.8323527[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]