[vc_empty_space][vc_empty_space]
Preliminary study of electrical conductivity and electrochemical properties of the influence copper addition in reduced graphene oxide (rGO)
Iskandar F.a, Aimon A.H.a, Abdillah O.B.a, Stavila E.a
a Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2017 IEEE.Graphene is a two-dimensional material which has interesting properties such as high theoretical surface area, excellent intrinsic strength, high thermal, and electrical conductivity properties. These superior properties make graphene suitable as an anode in a lithium battery. In this research, we introduced copper to enhance electrical conductivity and electrochemical properties of reduced graphene oxide (rGO), since copper has excellent conductivity properties. rGO with the addition of copper has successfully synthesized via in situ chemical exfoliation with microwave-assisted. The resulting samples were characterized by using Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM), four-point probe, and Electrochemical Impedance Spectroscopy (EIS). The annealing treatment could increase the electrical conductivity of the sample. Electrochemical properties of samples have been characterized using Electrochemical Impedance Spectroscopy (EIS), resulting in charge transfer resistance (Rct) value of 48.1 Ohm from the sample of rGO with the addition of 5 wt% copper.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Annealing treatments,Charge transfer resistance,Chemical exfoliations,Conductivity properties,Electrical conductivity,Fourier transform infrared,Reduced graphene oxides (RGO),Two-dimensional materials[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]annealing,conductivity,copper,resistance charge transfer,rGO[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]ACKNOWLEDGMENT This work was supported partially by Penelitian Unggulan Perguruan Tinggi (PUPT) 2016, The Ministry of Education, Research, and Technology, Republic of Indonesia. We gratefully acknowledge partial funding support from the United States Agency International Development (USAID) under the Sustainable Higher Education Research Alliances (SHERA) program. E. Stavila would like to thanks to Insentif Postdoc Program, ITB, for the supporting fund.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICEVT.2017.8323543[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]