Enter your keyword

2-s2.0-85051048320

[vc_empty_space][vc_empty_space]

Micro-pyrolysis of lignin-rich digested stillage from 2nd generation bioethanol production: Investigation to determine the catalytic effect of its natural ash

Priharto N.a,b, Prins W.b, Ronsse F.b, Heeres H.J.c

a School of Life Sciences and Technology, Institut Teknologi, Coblong, Kota Bandung, 40132, Indonesia
b Department of Biosystems Engineering, Ghent University, Gent, 9000, Belgium
c Department of Chemical Engineering, University of Groningen, Groningen, 9747 AG, Netherlands

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 ETA-Florence Renewable Energies.Lignin-rich digested stillage from a sequence of 2nd generation bioethanol production followed by anaerobic digestion is a unique feedstock for fast pyrolysis process. The feedstock contains a high amount of lignin (62 wt. % d.b), ash (9.97 wt. % d.b), residual polysaccharide and microbial biomass portions. Qualitative analysis using a micro-pyrolyser for this feedstock indicates that the pyrolysis vapours exhibit similarity with chemical compounds in pyrolysis vapours from alkali lignin, organosolv lignin and kraft lignin. Detailed analyses confirm the presence of several types of phenolic compounds, ketones, benzenes, furans, and aromatic hydrocarbons typically found in pyrolysis vapours of feedstock with a high hemicellulose-lignin fraction. Further analysis of the feedstock ash reveals a high concentration of alkaline earth metals (e.g. calcium and magnesium), transition metals (e.g. iron) and posttransitional metals (e.g. zinc), commonly used for doping zeolite catalysts (e.g. ZSM-5). Using the feedstock’s natural ash as a fast-pyrolysis catalyst could provide additional value and better economics by enabling alternative utilization pathways for these otherwise discarded materials. This work aims at investigating the effects of original ash as a catalyst for fast pyrolysis of lignin-rich digested stillage using a micro-pyrolyser. In-situ catalytic micro-pyrolysis experiments have been conducted in quadruplets using the Frontier Laboratories Multi-Shot tandem pyrolyser EGA/PY-3030D coupled with a TRACE GC Ultra and ISQ Single Quadrupole MS. Proximate and ultimate analyses, gross calorific value, acid-insoluble lignin content, and elemental content were carried out to fully characterize the feedstock. Changes in the concentrations of pyrolysis key vapour components (e.g. phenolics, furans, benzenes) were assessed by calculating the ratio of peak areas (relative to the per sample weight) in original-ash catalysed micro-pyrolysis over those of non-catalytic micro-pyrolysis. A value below one indicates a decrease in abundance of a particular compound while a value higher than one suggests an increase in the formation of that compound upon the addition of ash to the lignin digestate pyrolysis. The results of this ratio calculation suggest some significant changes in the pyrolysis vapour composition. Carbon dioxide and methoxyeugenol increase by a factor of almost two while p-creosol, o-cresol, methanol, chloromethane, pyrrole, and benzene on the other hand are decreased. Several newly formed ketones and methylated compounds such as 2-butanone, butyrolactone, 2, 3-butanedione, 2-methylfuran, and 2-methyl 2- cyclopenten-1-one were detected in the vapours derived from ash-catalyzed micro-pyrolysis. The changes suggest that natural ash has the potential to alter fast-pyrolysis vapours of lignin-rich digested stillage by augmenting decarboxylation, methylation, aldol condensation and retro-aldol reactions.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Ashes,Catalyst,Fast pyrolysis,Lignin[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]