[vc_empty_space][vc_empty_space]
Low-temperature metastable tetragonal zirconia nanoparticles (NpMTZ) synthesized from local zircon by a modified sodium carbonate sintering method
Septawendar R.a,b, Nuruddin A.a, Sutardi S.b, Maryani E.b, Asri L.A.T.W.a, Purwasasmita B.S.a
a Laboratory of Advanced Material Processing, Department of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
b Department of Advanced Ceramics, Glass, and Enamel, Center for Ceramics, Ministry of Industry of Indonesia, Bandung, 40272, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018, Australian Ceramic Society.The metastable tetragonal zirconia is an interesting material exhibiting a high surface area and photoluminescence properties. The present work studies the characteristics of the metastable tetragonal zirconia nanoparticles that were successfully prepared from local zircon without using a template by a modified sodium carbonate sintering method, followed by leaching, slow hydrolysis, and calcination at a low temperature. Zircon and alkaline were combined at a mole ratio of 1:2 and sintered at 1000 °C. The sintered material was washed with water to dissolve the silica and followed by leaching with sulfuric acid at pH 1–2 to dissolve the zirconia then followed by slow hydrolysis until pH 9 to precipitate zirconium hydroxide. The final product was evaluated including thermal behavior, phase transformation, chemical composition, infrared spectra, microstructure, and textural properties. Crystallization of zirconia occurred at 564.29 °C. Good crystallinity of the zirconia phase was obtained at 800 °C consisting of 80% tetragonal zirconia with a crystal size of 11 nm corresponding to its crystal plane of (101) and 20% monoclinic zirconia. At this temperature, zirconia attains 83.19% in purity, shows typical infrared spectrum, and consists of particles less than 40 nm in sizes that agglomerate, belongs to a mesoporous material exhibiting a high surface area of 46.990 m2/g. Increase in calcination temperature at 1050 °C transformed the tetragonal phase to the monoclinic phase of zirconia. Overall, the present work reveals a promising template-free method on the preparation of the metastable tetragonal zirconia nanoparticles from local zircon.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Calcination temperature,Chemical compositions,Monoclinic zirconia,Photoluminescence properties,Sulfuric acid leaching,Template free method,Tetragonal zirconia,The local zircon of West Borneo[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Modified sodium carbonate sintering,Slow hydrolysis,Sulfuric acid leaching,The local zircon of West Borneo,The metastable tetragonal zirconia nanoparticles[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]Funding information The authors would like to thank The Indonesian Endowment Fund for Education (LPDP) for financial support.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1007/s41779-018-0193-4[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]