[vc_empty_space][vc_empty_space]
Coevolution of second-order-mutant
Tuloli M.S.a, Sitohang B.a, Hendradjaya B.a
a Sekolah Teknik Elektro Dan Informatika, Institut Teknologi Bandung, Bandung, Kota Bandung, Jawa Barat, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 Institute of Advanced Engineering and Science. All rights reserved.One of the obstacles that hinder the usage of mutation testing is its impracticality, two main contributors of this are a large number of mutants and a large number of test cases involves in the process. Researcher usually tries to address this problem by optimizing the mutants and the test case separately. In this research, we try to tackle both of optimizing mutant and optimizing test-case simultaneously using a coevolution optimization method. The coevolution optimization method is chosen for the mutation testing problem because the method works by optimizing multiple collections (population) of a solution. This research found that coevolution is better suited for multi-problem optimization than other single population methods (i.e. Genetic Algorithm), we also propose new indicator to determine the optimal coevolution cycle. The experiment is done to the artificial case, laboratory, and also a real case.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Mutation analysis,Mutation testing,Software engineering,Software testing[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.11591/ijece.v8i5.pp.3238-3249[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]