Enter your keyword

2-s2.0-85052394776

[vc_empty_space][vc_empty_space]

A staggered method for the shallow water equations involving varying channel width and topography

Mungkasi S.a, Magdalena I.b, Pudjaprasetya S.R.b, Wiryanto L.H.b, Roberts S.G.c

a Department of Mathematics, Faculty of Science and Technology, Sanata Dharma University, Yogyakarta, Indonesia
b Department of Mathematics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, Indonesia
c Department of Mathematics, Mathematical Sciences Institute, Australian National University, Canberra, Australia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 by Begell House, Inc.We propose a staggered-grid finite volume method for solving the shallow water equations involving varying channel width and topography in one dimension. The method is an extension of an existing staggered conservative scheme for shallow water flows. One great advantage of the numerical method is that it does not need any Riemann solver in the flux calculation, so the numerical computation is cheap. We obtain that the method is able to solve a wide range of problems. The proposed method is well balanced and of the first order of accuracy.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Channel widths,Conservative schemes,Flux calculations,Numerical computations,Shallow water equations,Shallow water flow,Staggered grid,Varying width[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Finite volume method,Shallow water equations,Staggered grids,Varying topography,Varying width[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The work of Sudi Mungkasi was financially supported by a research grant Hibah Penelitian Dasar Unggulan Pergu-ruan Tinggi from Direktorat Riset dan Pengabdian Masyarakat of the Ministry of Research, Technology, and Higher Education of the Republic of Indonesia, year 2018.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1615/IntJMultCompEng.2018027042[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]