[vc_empty_space][vc_empty_space]
Reduction the Oxygen Content of the Coconut Shell Char Produced by Using Simple Pyrolysis Method
Rosi M., Viridi S.b
a Instrumentation and Energy Engineering Group, School of Electrical Engineering, Telkom University, Terusan Buah Batu, Bandung, Indonesia
b Nuclear Physics and Biophysics Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.Pyrolysis is known as a heating method which can decompose biomass to be the char in the absence of oxygen by providing carrier gas into the furnace. In practice, not all laboratories are equipped with carrier gas. Especially in large scale production, high cost production become the main problem. In this study, we propose simple pyrolysis method without carrier gas to produce coconut shell char as one of the biomass sources. The purpose of this research was to produce the coconut shell char using the simple pyrolysis method to obtain high purity carbon with low oxygen content. Experimental studies focused on the additional treatments complement to the pyrolysis process of the coconut shell. These treatments are proposed to minimize the oxygen content in the char. In this case, the oxygen bind to the carbon can reduce the carbon pore size. The produced coconut shell char were characterized by employing SEM-EDX, XRD, FTIR and Nitrogen Isotherm Physisorption. It was found that the treatments potential to reduce the oxygen content, contaminant and also increase the carbon yield.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Additional treatment,Biomass source,Heating method,Large scale productions,Low oxygen contents,Nitrogen isotherms,Oxygen content,Pyrolysis process[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The authors wish to thank to The Ministry of Technology Research and Higher Education (Kemenristek-Dikti), Republic of Indonesia for its financial support of our research through a pasca doctoral grant (Hibah Pasca Doktor) for 2017-2018. The first author also thank to the Institut Teknologi Bandung for research collaboration.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1757-899X/395/1/012024[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]