Enter your keyword

2-s2.0-85054146136

[vc_empty_space][vc_empty_space]

The effects of insulator thickness and substrate doping density on the performance of ZnO/SiO2/n-Si solar cells

Noor F.A.a, Oktasendra F.b, Sustini E.a, Khairurrijal K.a

a Physics of Electronic Materials Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia
b Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group.The insulator layer and the substrate material play an important role in determining the performance of metal-insulator-semiconductor type solar cells. Here, the effects of insulator layer thickness and substrate doping density on the efficiency of a ZnO/SiO2/n-Si solar cell were studied. Semi-analytical calculations wer performed to obtain the current–voltage dark current, efficiency, and current–voltage characteristics of the cell. An efficiency of 20% was obtained with an insulating layer thickness of around 19 Å. It was also found that the efficiency started to decrease when an insulator layer thicknesses greater than the optimum thickness was used. Furthermore, the efficiency of the cells decreased with increasing substrate doping density, and the maximum efficiency was obtained with a substrate doping density of 6 × 1022 m−3. By optimizing the insulating layer thickness and substrate doping density an efficiency of 20% was achieved at a cell thickness of 25 μm.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Insulating layers,Insulator thickness,Maximum Efficiency,Metal-insulator-semiconductors,Substrate doping,Substrate material,Tunnelling current,Voltage characteristics[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]efficiency,insulator thickness,substrate doping density,tunnelling current,ZnO/SiO2/n-Si solar cells[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1080/10667857.2018.1520956[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]