Enter your keyword

2-s2.0-85055336365

[vc_empty_space][vc_empty_space]

Pedestrian crossing model in urban street (Case study on commercial area in Bandung)

Wibowo S.S.a, Wicaksana R.a

a Bandung Instute of Technology, Study Program of Civil Engineering, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 The Authors, published by EDP Sciences.Pedestrians who cross without any crossing facilities and under mixed-traffic tend to have varying responses. The responses can be analyzed by using multiple linear regression model, with pedestrian crossing delay and pedestrian crossing speed set as response variables. This research aims to develop two pedestrian crossing models based on the condition at the midblock part of urban street, in particular commercial area and without specific crossing facilities. The two models are pedestrian crossing delay model and pedestrian crossing speed model. The affecting factors are considered in linear relationship and the multiple-linear regression models are used. The principal factor in the pedestrian crossing delay model is group size of more than 3 persons, while in the model of pedestrian crossing speed, the principal factors are number of group size and pedestrian baggage. The mean of pedestrian crossing delay was about 3 seconds while pedestrian crossing speed was about 1 m/s.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Affecting factors,Crossing speed,Delay modeling,Linear relationships,Mixed traffic,Multiple linear regression models,Principal factors,Urban streets[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1051/matecconf/201818102004[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]