[vc_empty_space][vc_empty_space]
Tuning the excitonic properties of ZnO:Sn thin films
Nurfani E.a,b, Purbayanto M.A.K.a, Akutsu R., Naradipa M.A.d, Diguna L.J.f, Birowosuto M.D.g, Takase K., Rusydi A.d, Darma Y.a
a Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
b Materials Engineering Program, Institut Teknologi Sumatera, Terusan Ryacudu, Lampung, 35365, Indonesia
c College of Science and Technology, Nihon University, Chiyoda, Tokyo, 101-0062, Japan
d Department of Physics, Faculty of Science, National University of Singapore, 117542, Singapore
e NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117456, Singapore
f Department of Renewable Energy Engineering, Prasetiya Mulya University, Tangerang, 15339, Indonesia
g CNRS International NTU THALES Research Alliances/UMI 3288 (CINTRA), Research Techno Plaza, 637553, Singapore
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 Elsevier B.V.The effects of Sn doping, deposition temperature, and post-annealing treatment on the excitonic behavior of ZnO:Sn (SZO) thin films deposited by dc-unbalanced magnetron sputtering have been studied. Sn doping induces the decrease of grain size and promotes the formation of oxygen vacancy-related trap states as indicated by A1 LO mode in Raman spectra and green emission in photoluminescence spectra. Using a critical point analysis of the dielectric functions from spectroscopic ellipsometry data analysis, Sn doping blueshifts the excitonic absorption and decreases the exciton lifetime via screening the electron-hole Coulomb interaction. By varying the deposition temperature from room temperature up to 300 °C (SZO-3), there is no change in excitonic absorption. Then, annealing of SZO-3 at 600 °C under oxygen environment (SZO-6) strongly improves the excitonic absorption as well as its lifetime. Critical point analysis on SZO-6 sample clearly reveals the excitonic transition at 3.38 eV and exciton-phonon complexes at 3.66 eV. Thus, the result is important to improve the functionality of doped ZnO with strong excitonic absorption for optoelectronic applications.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Critical point analysis,Deposition temperatures,Dielectric functions,Optoelectronic applications,Photoluminescence spectrum,Post annealing treatment,Sn-doped ZnO,Unbalanced magnetron sputtering[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Annealing,Dc-unbalanced magnetron sputtering,Exciton,Sn doped ZnO,Thin films[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work is supported by Riset Dasar Unggulan Perguruan Tinggi 2018 (532w/I1.C01/PL/2018), Riset Kompetensi 2018 from Research, Technology and Higher Education (RISTEKDIKTI) of Indonesian Government, P3MI 2018 (1275G/I1.C01/PL/2018) and Riset KK ITB 2018 (234f/I1.C01/PL/2018) research program from Institut Teknologi Bandung. A.R. and M.A.N. acknowledge Singapore Ministry of Educations (Nos. MOE2015-T2-2-065, MOE2015-T2-1-099, and MOE2015-T2-2-147) and FRCs (Nos. R-144-000-379-114 and R-144-000-368-112).[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.optmat.2018.11.015[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]