Enter your keyword

2-s2.0-85057607002

[vc_empty_space][vc_empty_space]

Group formation method through heuristics algorithm

Pratiwi O.N.a, Rahardjo B.a, Supangkat S.H.a

a School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2005 – ongoing JATIT & LLS.Cooperative learning is an approach of learning that work together in small group to achieve goal together. This method has proven can increase student ability, confident and communication skill. One method of cooperative learning is Jigsaw method. Jigsaw method requires formation in heterogeneous groups, but remains homogeneous between groups. Unfortunately, determination of appropriate group formation according to the method is difficult, especially if the number of students is large. Therefore, this research attempts to propose an algorithm to set heterogeneous group formation of student properly. The right formation can encourage students to learn optimally and able to improve students’ understanding well. In this study, the process of grouping students based on student dissimilarity. This paper contributes a group formation algorithm with the Centered-Optimization approach. For comparison, in this study the Centered-Optimization algorithms compared to Centered-Random algorithms. As result, the Centered-Optimization algorithm can provide the highest heterogeneous fitness value. Based on ANOVA Univariate analysis, the fitness value of fixed-root-optimization algorithm is significantly different from the two comparison algorithms.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Computer science education,Cooperative learning tools,E-learning,Group formation[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This research was supported by DRPM – Ministry of Research, Technology and Higher Education (Indonesia). We would also like to thank Reni Susanti, S.Pd as counselor teacher in this research.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]