[vc_empty_space][vc_empty_space]
Mini round-robin test on the split Hopkinson pressure bar
Kariem M.A.a, Ruan D.b, Beynon J.H.c, Prabowo D.A.a
a Faculty of Mechanical and Aerospace Engineering, Bandung Inst. of Technology, Bandung, West Java, 40132, Indonesia
b Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, 3122, Australia
c Faculty of Science and Engineering, Flinders University, Bedford Park, 5042, Australia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Copyright © 2017 by ASTM InternationaIt is known that the split Hopkinson pressure bar (SHPB) technique has not been standardized yet. A standardized SHPB technique is necessary to provide guidelines for determining the intrinsic material properties. One possibility to examine the consistency of the SHPB technique is to conduct a mini round-robin test. This paper examines whether consistent results can be achieved from three sets of SHPBs by conducting numerical simulations and physical tests on two metals: commercial copper and 6060-T5 aluminum. Both numerical simulation and physical tests employed three sets of SHPBs, namely, 12.7-mm-diameter SHPB made from the AISI 4140 steel, 13-mm-diameter SHPB made from the high-strength steel (HSS), and 14.5-mm-diameter SHPB made from maraging steel 350 (AISI 18Ni). The current study shows that consistent flow stresses (with an acceptable flow stress fluctuation of ±2.2 %) were obtained from these three sets of SHPBs, which indicates the possibility of SHPB standardization in the future.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Compressive tests,High strain-rate testing,Kolsky bar,Mini round robins,Round Robin test,Split hopkinson pressure bar techniques,Split Hopkinson pressure bars,Stress fluctuations[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Dynamic compressive tests,High-strain-rate testing,Numerical simulation,Round-robin test,Split Hopkinson pressure bar (SHPB) (Kolsky bar)[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The first writer acknowledges Swinburne University of Technology for financial support through a Swinburne University Postgraduate Research Award scholarship during his PhD program.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1520/JTE20160054[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]