[vc_empty_space][vc_empty_space]
The utilization of aromatic hydrocarbon by nitrate- and sulfate-reducing bacteria in single and multiple nitrate injection for souring control
Kamarisimaa,b, Miyanaga K.a, Tanji Y.a
a School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, 226-8501, Japan
b School of Life Science and Technology, Institut Teknologi Bandung, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 Elsevier B.V.The application of nitrate-mediated souring control has been proposed as a promising tool. However, the efficiency of this method remains controversial due to several unresolved issues, such as the determination of effective nitrate concentration, the optimal injection period, etc. In this study, we investigated the depletion of specific hydrocarbons as the electron donor for sulfate-reducing bacteria (SRB) and nitrate-reducing bacteria (NRB) by varying the nitrate concentration (1.5 mM and 4.5 mM) and injection timing (single, Ns; and multiple Nm) to control souring. Based on analysis of bacterial communities, genus Arcobacter was predominant, followed by NRB of family Rhodospirillaceae, which includes Thalassospira sp. By contrast, in the condition without nitrate addition (Nw/o), genus Desulfotignum was dominant. Both SRB and NRB share similar hydrocarbon preferences: toluene, ethylbenzene, and xylene. At the limiting nitrate concentration to suppress SRB activity, 1 mM, SRB could co-exist with NRB and promote a more diverse bacterial community.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Arcobacter,Desulfotignum,Nitrate injection,Nitrate-reducing bacteria,Souring,Sulfate reducing bacteria[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Arcobacter,Aromatic hydrocarbon,Desulfotignum,Nitrate injection,Nitrate-reducing bacteria,Souring,Sulfate-reducing bacteria[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.bej.2018.12.006[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]