Enter your keyword

2-s2.0-85059417547

[vc_empty_space][vc_empty_space]

Development of Glass for Radiation Shielding Material

Djamal M.a, Yuliantini L.a, Hidayat R.a, Rauf N.b, Kaewkhao J.c

a Department of Physics, FMIPA, ITB, Bandung, Indonesia
b Department of Physics, FMIPA, UNHAS, Makassar, Indonesia
c CEGM, NPRU, Thailand

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2017 IEEE. The investigation of glass for radiation shielding material has been more intense. It occurs because the development of crystal is complicated, inflexible to shape and high-cost production. Meanwhile, glass possesses high refractive index, transparency, easy to fabricate and low-cost production. The glasses development were manufactured by melt and quenching method. The radiation shielding properties were measured by Compton scattering instrument. The addition of metal oxides such as Bi 2 O 3 , PbO, and BaO in silicate glass improved the density and effective atomic number of the glass sample. Meanwhile, the addition of oxyfluoride in borate glass decreased the mass attenuation coefficient of glass. Both experimental data of effective atomic number and mass attenuation coefficient of glass were compared by theoretical data. The theoretical data was calculated by WinXCom program. The highest of absorption spectra occurred due to the addition of oxyfluoride in glass system. All results showed that glass was a suitable candidate for radiation shielding material. The oxyfluoride glass possessed the more potential for radiation shielding material among glass samples.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Effective atomic number,High refractive index,Mass attenuation coefficients,optical,Oxy-fluoride glass,Radiation shielding material,Shielding properties,Silicate glass[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]glass,optical,radiation shielding[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]ACKNOWLEDGMENT The author would like to thank Nakhon Pathom Rajabhat University, Research Grant of Asahi Glass Foundation (2624/I1.B04.1/KU/2017), and Research of P3MI ITB (1011/I1.C01/PL/2017) for all facilities and supports.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICICI-BME.2017.8537747[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]