[vc_empty_space][vc_empty_space]
Osteoarthritis Classification Using Self Organizing Map Based Gray Level Run Length Matrices
Anifah L.a, Mengko T.L.R.b, Purnomo M.H.c, Eddy Purnama I.K.c
a Informatics Department, Faculty of Engineering, Universitas Negeri, Surabaya, Indonesia
b Electrical Engineering Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
c Electrical Engineering Department, Institut Teknologi, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2017 IEEE.The number of knee osteoarthritis patients in the world is very high. This disease can not be cured, and can only be treated so that the condition does not get worse. Detecting the status of osteoarthritis early is very important, the patient can be treated according to KL-Grade and hopefully the quality of life of patient will be improved. This study discusses Gray Level Run Length Matrices feature-based classification using Self Organizing Map. The classification results show KL-Grade 0 accuracy is 20.68%, KL-Grade 1 has an accuracy of 25.86%, accuracy for KL-Grade 2 is 20.69%, KL-Grade 3 has an accuracy only 30.17%, and KL-Grade 4 just only 12 % could classified. Based on the results obtained then further research is needed to obtain better results.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Classification results,Feature-based classification,GLRLM,Gray level run length,knee,Knee osteoarthritis,osteoarthritis,Quality of life[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]classification,GLRLM,knee,osteoarthritis,SOM[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This research was supported by DIKTI Indonesia and Universitas Negeri Surabaya. We would like to show our gratitude to Osteoarthritis Initiative for sharing data and biomarker for this research.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICICI-BME.2017.8537730[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]