[vc_empty_space][vc_empty_space]
Improving conductivity performance of chitosan by carboxymethylation reaction: Synthesis and characterization
Triandani N.W.P.a, Arcana I.M.a
a Master Research Student on Department of Teaching Chemistry, Faculty of Mathematical and Science, Institut Teknologi Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 Trans Tech Publications, Switzerland.Chitosan has been applied widely in electrical energy storage purposes like battery and fuel cell, as in electrolyte. This research purposed on improving compatibility chitosan as material for electrical energy storage by chemical reaction. Carboxymethylation reaction performed on chitosan to add carboxymethyl groups in either hydroxyl or amine sites or both. The substitution result could effect by optimizing in the ratio of reactants and reaction condition. Carboxymethylation process on chitosan will confirm by FTIR analysis and degree of carboxymethyl substitution can be calculated from1H NMR. Its ionic conductivity will calculate from EIS. The highest degree of substitution obtained in composition of CMC-VI which was 1.28. This reaction had the ratio of chitosan: monochloroacetic acid about 1:6 (m/m) and activation reaction at 80°C. EIS analysis showed improvement of carboxymethyl chitosan’s conductivity where pure chitosan had 2.0 x 10-6 Scm-1 and CMC-VI had 2.7 x 10-5 Scm-1 at room temperature.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Carboxymethyl chitosan,Carboxymethylation reactions,Degree of substitution,Electrical energy storages,Monochloroacetic acid,Reaction conditions,Solid electrolyte membrane,Synthesis and characterizations[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Charboxymethyl Chitosan,Chitosan,Lithium battery,Solid electrolyte membrane[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.4028/www.scientific.net/MSF.936.121[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]