[vc_empty_space][vc_empty_space]
Indonesian Shift-Reduce Constituency Parser Using Feature Templates Beam Search Strategy
Herlim R.S.a, Purwarianti A.a
a School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 IEEE. In natural language processing, the syntactic analysis process (such as constituency parsing) is required to understand word context in the sentence. We propose a modification on using binarization technique alternative and feature multiplication factors for shift-reduce constituency parser using beam search approach and structured learning algorithm. Our modification in binarization technique is inspired from assorted tagging schemes in NER, while the feature multiplication factors is used to scale up our scoring system for beam search algorithm. For evaluation, we mainly used the new INACL Treebank (consisting 11,356 and 4,457 instances for training and test set), resulted 50.3% in f 1 -score. Our parser also compared with previous work by using the same training and test set for IDN-Treebank, resulted 74.0% in f 1 -score.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Beam search algorithms,constituency,Feature template,Multiplication factor,parser,shift-reduce,Structured learning,Syntactic analysis[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]constituency,parser,shift-reduce[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]ACKNOWLEDGMENT We would like to give special thanks to Indonesian Association of Computational Linguistics (INACL) for providing the treebank used in our research. This research is partially funded by Ministry of Research[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICAICTA.2018.8541292[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]