[vc_empty_space][vc_empty_space]
Sulfur-Rich Colloidal Nickel Sulfides as Bifunctional Catalyst for All-Solid-State, Flexible and Rechargeable Zn-Air Batteries
Sumboja A.a,b, Chen J.d, Ma Y.f, Xu Y.g, Zong Y., Lee P.S.d, Liu Z.
a Material Science and Engineering Research Group Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia
b National Centre for Sustainable Transportation Technology (NCSTT), Bandung, 40132, Indonesia
c School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
d Singapore-HUJ Alliance for Research and Enterprise (SHARE) Nanomaterials for Energy and Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE), 138602, Singapore
e Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 138634, Singapore
f Department of Materials Science and Engineering, National University of Singapore, 117574, Singapore
g Department of Chemistry, University College London, London, WC1H 0AJ, United Kingdom
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Earth-abundant and high-performance catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are highly desirable in development of energy-efficient rechargeable Zn-air batteries. In this work, sulfur-rich colloidal nickel sulfides (NiS x ) are prepared as OER/ORR bifunctional catalysts via a two-step hydrothermal process. The NiS x nanoparticles (NPs) with large surface area show high OER activity and excellent stability, as evidenced by low overpotential of 301 mV, small Tafel slope of 41 mV dec −1 and high stability over 20 h of chronopotentiometry test. Due to their sulfur-rich nature (i. e. Ni 3 S 4 and NiS 2 ), the obtained NiS x also exhibit good ORR activity. The introduction of graphene oxide (GO) in the starting materials leads to the formation of a composite catalyst composed of conductive sulfur-doped reduced graphene oxide (S-rGO) and NiS x . A high ORR onset potential of 0.91 V (vs. RHE) is obtained from the sulfur-rich NiS x NPs coupled with the S-rGO which facilitates the electron-transfer and furnishes the bifunctional catalytic activity. Rechargeable Zn-air batteries with NiS x /S-rGO bifunctional catalyst deliver stable charge and discharge voltages of 2.1 and 1.1 V over 590 cycles. Furthermore, all-solid-state and foldable Zn-air batteries using pliable and robust air cathodes of NiS x /S-rGO show similar voltage profile as their non-foldable counterparts. The foldable batteries exhibit stable cycling performance for up to 120 discharge/charge cycles at either flat or folded state, proving their high electrochemical and mechanical stability.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Bi-functional catalysts,Discharge/charge cycles,Nickel sulfide,Oxygen electrocatalysis,Oxygen evolution reaction,Oxygen reduction reaction,Reduced graphene oxides,Two-step hydrothermal process[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]bifunctional catalysts,nickel sulfides,oxygen electrocatalysis,sulfur-doped reduced graphene oxide,Zinc-air batteries[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This research was supported by the Advanced Energy Storage Research Programme (IMRE/12-2P0503 and IMRE/12-2P0504), Institute of Materials Research and Engineering of the Agency for Science, Technology and Research, Singapore. Luke Goh Xu Jie is thanked for graphical support.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1002/cctc.201802013[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]