Enter your keyword

2-s2.0-85060906340

[vc_empty_space][vc_empty_space]

Flexible Artificial Magnetic Conductor Reflector for Wearable Antenna Application

Aprizal M., Olivia Nur L., Setia Nugroh B., Munir A.b

a Telkom University, School of Electrical Engineering, Bandung, Indonesia
b Institut Teknologi Bandung, Radio Telecommunication and Microwave Laboratory, School of Electrical Engineering and Informatics, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 The Institute of Electronics, Information and Communication Engineers (IEICE).Wearable communication systems required high performance, compact and flexible antenna devices. In this paper, a flexible artificial magnetic conductor (AMC) reflector is designed using square patch array for wearable antenna application at the Industrial, Scientific and Medical (ISM) frequency of 2.45 GHz. The proposed AMC reflector is composed of 3 × 3 squares patches with concentric slots to gain the wide bandwidth response. A flexible dielectric material of RO3003@ from Rogers Corporation with the relative permittivity of 3.0 and the thickness of 0.5 mm is used as a dielectric substrate for the reflector deployment as well as for the wearable antenna. The characterization results show that the integration of flexible AMC reflector with a wearable antenna has improved radiation characteristic and gain of the antenna. The results indicate that the proposed flexible AMC reflector has the feasibility for performance enhancement of wearable antenna especially in wireless body area network (WBAN) communications.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Antenna applications,Artificial magnetic conductors,Dielectric substrates,Flexible antennas,Performance enhancements,Radiation characteristics,Relative permittivity,Wireless body area network[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work is partially supported by the National Strategy Institution Research Program from the Ministry of Research, Technology, and Higher Education the Republic of Indonesia, under contract No. 0788/K4/KM/2018. The authors also would like to thank Mr. Zenal Aripin from the Radio Telecommunication and Microwave Laboratory, School of Electrical Engineering and Informatics, Institut Teknologi Bandung for assisting experimental characterization.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.23919/PIERS.2018.8598052[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]