[vc_empty_space][vc_empty_space]
Thin em Wave Absorber Metasurface Based on Artificial Magnetic Conductor
Fikry I., Nur L.O., Nugroho B.S., Munir A.b
a Telkom University, School of Electrical Engineering, Bandung, Indonesia
b Radio Telecommunication and Microwave Laboratory, School of Electrical Engineering and Informatics, Institut Teknologi, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 The Institute of Electronics, Information and Communication Engineers (IEICE).Most of electromagnetics (EM) wave absorbers have been realized on some hard substrates. Therefore the use was limited only in the field of planar surfaces, while absorbing EM waves are required with various forms of field. In this paper, based on a principle of artificial magnetic conductor (AMC) used as a metasurface, a thin EM wave absorber composed of octagonal patch array is designed on a dielectric substrate of silicon with the relative permittivity of 5.7 and the thickness of 0.3 mm. The use of thin substrate for the absorber is necessary to have possibility and flexibility in surface of field with a non planar shape. To obtain high absorption rate of proposed wave absorber, resistive elements are incorporated into the patches and connecting to the adjacent patches. The characterization result shows that the reflection coefficient was up to 29.15 dB at the resonant frequency of 2.5 GHz for the value of resistive elements of 2100\ \Omega, in which this is much higher than the result without resistive elements.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Adjacent patches,Artificial magnetic conductors,Dielectric substrates,Electromagnetics,EM wave absorber,Non-planar shapes,Relative permittivity,Resistive elements[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work is partially supported by the National Strategy Institution Research Program from the Ministry of Research, Technology, and Higher Education the Republic of Indonesia, under contract No. 0788/K4/KM/2018. The authors also would like to thank Mr. Zenal Aripin from the Radio Telecommunication and Microwave Laboratory, School of Electrical Engineering and Informatics, Institut Teknologi Bandung for assisting experimental characterization.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.23919/PIERS.2018.8597985[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]